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Abstract  

As artificial intelligence (AI) systems increasingly underpin critical 
applications in healthcare, finance, defense, and infrastructure, 
ensuring their security has become paramount. However, the rapid 
advancement of quantum computing poses a significant threat to 
classical cryptographic schemes that currently safeguard these 
systems. Quantum algorithms such as Shor’s and Grover’s threaten 
to undermine the confidentiality, integrity, and authentication of 
data and models that AI systems depend on. In this context, Post-
Quantum Cryptography (PQC) has emerged as a crucial area of 
research aimed at developing cryptographic algorithms that are 
secure against both classical and quantum adversaries. 

This paper investigates the intersection of quantum computing 
threats and AI system vulnerabilities, highlighting how current 
security mechanisms may fail in a post-quantum era. We explore 
various categories of PQC—including lattice-based, hash-based, 
and multivariate polynomial cryptography—and evaluate their 
applicability to securing AI systems, particularly in scenarios such 
as model distribution, federated learning, data encryption, and 
communication in AI-enabled edge and IoT environments. 

Through analysis of emerging use cases and proposed architectures, 
the paper outlines how PQC can be integrated into the AI lifecycle 
to mitigate quantum-era threats. It also identifies key challenges 
such as computational overhead, integration complexity, and 
standardization gaps. The study concludes by outlining future 
research opportunities, including the development of efficient PQC 
protocols tailored to AI workloads, the creation of quantum-
resilient AI pipelines, and the importance of interdisciplinary 
collaboration to secure AI’s future. 
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1. Introduction 

Artificial Intelligence (AI) has become a cornerstone of modern digital infrastructure, with 
applications ranging from autonomous vehicles and smart healthcare systems to financial 
modeling and critical defense operations. These systems frequently rely on vast amounts of 
sensitive data and complex machine learning models, which are often distributed across networks 
or deployed in edge and cloud environments. As AI continues to be embedded in high-stakes 
domains, ensuring its security, integrity, and privacy is of paramount importance. 

Meanwhile, quantum computing—once a purely theoretical concept—is rapidly advancing 
toward practical implementation. Leveraging the principles of quantum mechanics, quantum 
computers are expected to solve certain classes of problems exponentially faster than classical 
computers. This progress, while promising for scientific and industrial breakthroughs, also 
presents a severe security challenge. Algorithms like Shor’s algorithm can efficiently factor 
large integers, threatening to break widely used public-key cryptographic systems such as RSA, 
ECC, and DH. Similarly, Grover’s algorithm poses risks to symmetric cryptographic schemes by 
reducing brute-force attack complexity. 

This looming quantum threat extends directly to AI systems, which depend heavily on 
cryptographic mechanisms to: 

 Protect model integrity and intellectual property 
 Secure communication between distributed components (e.g., in federated learning) 
 Ensure privacy of training and inference data 
 Authenticate users and devices accessing AI services 

If these mechanisms are compromised, the consequences could include data breaches, model 
theft, manipulation of AI outputs, and systemic failures in critical infrastructures. As such, 
it is essential to future-proof AI systems by transitioning to cryptographic techniques that remain 
secure in the presence of quantum adversaries. 

Post-Quantum Cryptography (PQC) is the field devoted to developing classical cryptographic 
algorithms that are resistant to both classical and quantum attacks. Unlike quantum cryptography, 
PQC does not require quantum communication infrastructure, making it a more practical near-
term solution for widespread adoption. NIST's ongoing efforts to standardize PQC algorithms 
reflect the urgency and importance of this transition. 

In this paper, we explore the intersection of AI security and post-quantum cryptography, focusing 
on how PQC can be applied to protect AI systems against quantum-enabled threats. We begin by 
reviewing the quantum threat landscape and the vulnerabilities it creates for AI applications. Next, 
we examine the fundamental principles and leading families of PQC, and analyze their 
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applicability to AI-specific use cases such as secure federated learning, model deployment, and 
data privacy. We also highlight real-world and experimental case studies where PQC is being 
considered for AI system protection. 

Finally, we discuss the key challenges in integrating PQC into AI workflows, including 
performance overhead, interoperability, and standardization, and we propose future research 
directions to bridge these gaps. By proactively addressing these issues, we aim to contribute to 
the development of resilient, secure, and trustworthy AI systems in the quantum era. 

2. Background and Related Work 

2.1 Classical Cryptography and Its Role in AI 

Traditional cryptographic systems are fundamental to the secure operation of AI workflows. Algorithms 
such as RSA, Elliptic Curve Cryptography (ECC), and Diffie–Hellman (DH) are widely used to ensure data 
confidentiality, secure communications, verify digital signatures, and maintain system integrity. Symmetric 
key algorithms such as AES are also deployed to encrypt training data, model weights, and inference 
outputs, particularly in distributed or cloud-based AI environments. Additionally, AI techniques like 
federated learning rely heavily on cryptographic schemes to protect user privacy and enforce model update 
authenticity. 

However, these classical encryption schemes are built on mathematical problems—such as integer 
factorization and discrete logarithms—that are vulnerable to quantum algorithms, thereby putting AI 
systems at risk as quantum computing matures. 

2.2 Quantum Computing and the Cryptographic Threat 

Quantum computers utilize qubits, which can exist in superposition and entangled states, enabling them to 
process complex computations far more efficiently than classical systems for certain problems. Two 
quantum algorithms present a direct threat to current cryptographic standards: 

 Shor’s Algorithm (1994): Efficiently factors large integers and solves discrete logarithms in 
polynomial time, undermining the security of RSA, DH, and ECC. 

 Grover’s Algorithm (1996): Provides a quadratic speed-up for brute-force search, weakening 
symmetric key cryptography such as AES and hash functions like SHA-2. 

As these algorithms mature with the progress of quantum hardware, the once theoretically secure 
cryptographic backbone of AI systems becomes increasingly vulnerable. 

2.3 Post-Quantum Cryptography (PQC) 

PQC refers to cryptographic algorithms designed to be secure against attacks by both classical and quantum 
computers. Unlike quantum key distribution (QKD), which requires quantum communication 
infrastructure, PQC can be implemented on classical systems, making it a practical choice for today’s AI 
infrastructure. 
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Major families of PQC include: 

 Lattice-Based Cryptography: Relies on the hardness of problems like Learning With Errors 
(LWE) and Ring-LWE; currently among the most promising PQC schemes. 

 Code-Based Cryptography: Based on the difficulty of decoding random linear codes. 
 Multivariate Polynomial Cryptography: Involves solving systems of multivariate quadratic 

equations over finite fields. 
 Hash-Based Signatures: Built on the security of cryptographic hash functions, particularly suited 

for digital signatures. 
 Isogeny-Based Cryptography: Uses problems related to elliptic curve isogenies; offers compact 

key sizes but is computationally intensive. 

The NIST Post-Quantum Cryptography Standardization Project has been instrumental in assessing 
and selecting robust PQC algorithms for widespread adoption. In 2022, NIST announced its selection of 
algorithms for standardization, including CRYSTALS-Kyber for key encapsulation and CRYSTALS-
Dilithium for digital signatures. 

2.4 AI-Specific Security Concerns in the Quantum Era 

AI systems face unique challenges beyond data confidentiality: 

 Model Theft and Tampering: Attackers could extract or modify models used in AI systems if 
digital signatures and encryption are broken. 

 Adversarial Machine Learning: Quantum-enhanced techniques could potentially create more 
sophisticated adversarial examples or train attack models faster. 

 Secure Inference and Federated Learning: These depend on secure multiparty computation and 
cryptographic guarantees, which are undermined if quantum attacks succeed. 

 Data Privacy in AI Pipelines: The massive data exchanges between AI components could be 
intercepted or altered if secure encryption fails. 

2.5 Related Work 

Several recent studies have begun exploring the integration of PQC into AI: 

 Chen et al. (2020) emphasized the risks of quantum computing to machine learning data privacy 
and suggested early migration paths to PQC-secured channels. 

 Alagöz & Ulutas (2022) reviewed potential cryptographic transitions for federated learning in the 
context of quantum threats. 

 NIST’s documentation and CISA’s recommendations continue to emphasize AI among the 
critical sectors needing PQC migration planning. 

Despite these efforts, the field remains under-explored. Most literature treats AI and PQC as separate 
disciplines, and practical frameworks for implementing PQC in AI pipelines are lacking. 

3. Quantum Threat Landscape for AI Systems 
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The integration of AI into critical digital infrastructure—ranging from autonomous systems and smart grids 
to healthcare diagnostics and financial forecasting—has significantly increased the attack surface for 
adversaries. As quantum computing matures, it introduces not just new computational capabilities but also 
new security vulnerabilities. Understanding the nature of quantum threats to AI systems is essential to 
proactively developing and adopting countermeasures such as Post-Quantum Cryptography (PQC). 

3.1 Cryptographic Weaknesses Exposed by Quantum Computing 

AI systems heavily rely on classical cryptography for securing data and model assets. Quantum computers, 
once sufficiently powerful, will be able to break widely used public-key encryption algorithms such as 
RSA, ECC, and DH, all of which are commonly employed to secure AI pipelines. 

 Training Data Breach: Quantum adversaries can decrypt data sets used to train AI models, 
enabling data poisoning, theft of proprietary information, or unauthorized access to personal 
information. 

 Model Theft: Without cryptographic protection, AI models transmitted or stored over a network 
can be extracted, cloned, or reverse-engineered. 

 Communication Tampering: Secure model updates in federated learning or edge AI can be 
intercepted or altered if key exchange protocols fail under quantum attacks. 

3.2 Specific AI Attack Vectors Enhanced by Quantum Capabilities 

Quantum computing will not only compromise cryptographic primitives but also accelerate existing attack 
methodologies against AI systems: 

 Adversarial Machine Learning: Quantum algorithms could improve the speed of generating 
adversarial examples or training surrogate models, reducing the time and effort needed to fool or 
bypass AI systems. 

 Data Inference Attacks: With broken encryption, attackers can analyze AI system outputs to infer 
sensitive training data—an especially serious concern in healthcare or financial applications. 

 Model Inversion and Extraction: Using decrypted communication channels, attackers can send 
crafted queries to AI models and reverse-engineer internal weights or architecture. 

 Backdoor Injection: In distributed or federated settings, if communication and model update 
verification are compromised, attackers can insert poisoned updates or hidden functionality into 
collaborative AI models. 

3.3 AI-Specific Vulnerabilities in Quantum Contexts 

Unlike traditional software, AI systems present unique vulnerabilities that quantum attacks can exploit 
more effectively: 

 Lack of Standard Security Protocols: Many AI frameworks prioritize functionality and 
performance over built-in security. Without standardized cryptographic APIs resistant to quantum 
threats, models are often inadequately protected. 

 Decentralization and Federated Learning: In federated or distributed AI models, multiple 
devices communicate and collaborate, relying on secure aggregation, authentication, and privacy. 
These functions are directly threatened by broken public-key infrastructure. 
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 Model-as-a-Service (MaaS): AI models hosted on cloud platforms are accessed remotely using 
encrypted channels. Once these channels are broken, AI models are exposed to theft or 
manipulation. 

3.4 Timing of the Threat: The "Harvest Now, Decrypt Later" Risk 

Even if large-scale quantum computers are not yet available, adversaries may intercept and store 
encrypted AI-related data now with the intent to decrypt it later using quantum tools. This “harvest now, 
decrypt later” strategy is especially dangerous for: 

 Sensitive medical and personal data 
 Proprietary AI model IP 
 Long-term deployment scenarios such as autonomous vehicles or national security systems 

This future-proofing concern makes urgent migration to PQC essential even before quantum computers 
become practically powerful. 

3.5 Emerging Scenarios and Real-World Risks 

Some real-world scenarios that underscore the urgency of securing AI against quantum threats include: 

 Smart Healthcare Systems: Patient data, diagnostic models, and telemedicine channels could be 
exposed to manipulation or theft. 

 Autonomous Vehicles: Adversarial control or spoofing of AI vision models through broken 
authentication or data tampering. 

 National Security AI: Strategic planning, threat detection, and operational AI systems could be 
intercepted, monitored, or sabotaged. 

4. Fundamentals of Post-Quantum Cryptography 

Post-Quantum Cryptography (PQC) is a class of cryptographic algorithms that are designed to be secure 
against both classical and quantum computational attacks. Unlike quantum cryptography, which relies on 
the principles of quantum mechanics for secure communication (e.g., Quantum Key Distribution), PQC 
algorithms are implemented on classical computers and are considered more practical for widespread 
deployment in current digital and AI infrastructures. 

4.1 Design Principles of PQC 

The design of PQC algorithms is based on hard mathematical problems that are believed to remain 
intractable for both classical and quantum computers. These problems are fundamentally different from 
those underlying current public-key cryptographic systems like RSA or ECC. Key design principles 
include: 

 Quantum Resistance: Algorithms must withstand known quantum attacks, including Shor’s and 
Grover’s algorithms. 

 Classical Efficiency: They must be implementable using classical hardware and scalable for large 
systems like AI frameworks. 
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 Robust Security Proofs: Security is often based on well-defined and long-studied mathematical 
problems with formal reductions. 

 Suitability for AI Systems: Must allow for low-latency, lightweight integration into real-time and 
distributed AI systems. 

4.2 Categories of Post-Quantum Cryptographic Algorithms 

Several mathematical families of PQC algorithms have been developed, each with distinct characteristics 
in terms of key sizes, computational requirements, and resistance to various attack vectors. 

4.2.1 Lattice-Based Cryptography 

 Mathematical Basis: Hard problems such as the Shortest Vector Problem (SVP) and Learning 
With Errors (LWE). 

 Examples: CRYSTALS-Kyber (encryption), CRYSTALS-Dilithium (signatures), NTRU, 
FrodoKEM. 

 Advantages: Efficient operations, high security, and suitability for AI workflows like federated 
learning. 

 AI Relevance: Can secure model updates and data in distributed AI environments. 

 

4.2.2 Code-Based Cryptography 

 Mathematical Basis: Decoding random linear codes, such as the McEliece cryptosystem. 
 Examples: Classic McEliece. 
 Advantages: Long-standing resistance to attacks. 
 Disadvantages: Large public key sizes, which can challenge deployment in low-resource AI 

settings (e.g., edge devices). 

4.2.3 Multivariate Polynomial Cryptography 

 Mathematical Basis: Solving systems of multivariate quadratic equations over finite fields. 
 Examples: Rainbow (digital signatures). 
 Advantages: Fast signature generation. 
 Risks: Some schemes in this category (like Rainbow) have been broken or shown to be insecure in 

practice. 

4.2.4 Hash-Based Cryptography 

 Mathematical Basis: One-wayness of hash functions. 
 Examples: SPHINCS+, XMSS. 
 Advantages: Simple and well-understood; robust against quantum attacks on digital signatures. 
 Disadvantages: Limited to signature schemes; relatively large signature sizes. 

4.2.5 Isogeny-Based Cryptography 

 Mathematical Basis: Isogenies between elliptic curves. 



 Page | 8 
 

 

 
Author: Danny Smith, Brighton Aldridge Community Academy, United Kingdom. 
Email: info@virtualeap.com 

 Examples: SIKE (Supersingular Isogeny Key Encapsulation), though recently broken. 
 Advantages: Small key sizes. 
 Risks: Fragile security—some candidates have been broken, making this area less reliable for now. 

4.3 NIST Post-Quantum Cryptography Standardization 

The U.S. National Institute of Standards and Technology (NIST) has led a global initiative to evaluate, test, 
and standardize PQC algorithms. In 2022, NIST selected the following finalists for standardization: 

 CRYSTALS-Kyber for key encapsulation (encryption) 
 CRYSTALS-Dilithium, FALCON, and SPHINCS+ for digital signatures 

These algorithms were chosen for their strong security proofs, performance, and practicality. NIST’s 
guidance is shaping global efforts to transition to quantum-safe cryptographic infrastructures, including 
those underpinning AI applications. 

4.4 Implementation Considerations for AI Systems 

AI systems have diverse and stringent requirements in terms of performance, real-time processing, and 
distributed communication. As such, PQC must be assessed not only for security, but also for usability and 
efficiency in AI contexts: 

 Computation Overhead: PQC algorithms often have higher computational costs, which may 
impact AI inference speed or training. 

 Memory and Bandwidth: Large key or ciphertext sizes may strain limited-resource devices in IoT 
or edge computing environments. 

 Interoperability: PQC solutions must be compatible with existing AI frameworks, cloud 
platforms, and communication protocols. 

 Standard Libraries and Toolkits: Ongoing efforts are integrating PQC into libraries such as 
OpenSSL, BoringSSL, and AI frameworks like TensorFlow and PyTorch for secure model 
delivery. 

5. Integrating PQC into AI Systems 

Integrating Post-Quantum Cryptography (PQC) into AI systems is not a straightforward plug-and-play 
operation. AI ecosystems are complex, involving distributed architectures, real-time data processing, and 
diverse applications from edge computing to cloud-hosted inference. Successful integration requires 
aligning PQC mechanisms with the functional and performance demands of AI workflows. This section 
explores where, how, and why PQC should be integrated into AI pipelines. 

 

5.1 Critical Integration Points in AI Workflows 

PQC can be embedded at multiple layers of the AI system lifecycle, each serving different purposes: 
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a. Data Collection and Preprocessing 

 Use Case: Encrypting and authenticating data collected from IoT or edge devices before 
transmission. 

 PQC Role: Lattice-based or code-based encryption schemes like CRYSTALS-Kyber ensure secure 
data ingestion from quantum-resilient channels. 

b. Model Training 

 Use Case: Protecting training data and model weights in centralized or federated learning 
environments. 

 PQC Role: Post-quantum key exchange ensures that participants in a federated learning system 
exchange updates securely, while post-quantum digital signatures verify model integrity. 

c. Model Inference and Prediction 

 Use Case: Preventing adversaries from eavesdropping on or manipulating queries and results. 
 PQC Role: Secure channels using PQC ensure encrypted inference over APIs, cloud servers, or 

mobile devices. 

d. Model Deployment and Updates 

 Use Case: Securing over-the-air model updates and deployment in production environments. 
 PQC Role: Hash-based or lattice-based signature schemes (e.g., Dilithium, SPHINCS+) 

authenticate updates to prevent tampering or backdoor injection. 

e. AI-as-a-Service (AIaaS) and Edge AI 

 Use Case: Securing communications between cloud servers and lightweight edge devices. 
 PQC Role: Lightweight PQC schemes suitable for constrained environments help maintain end-

to-end trust. 

 

5.2 Integration Strategies and Tools 

Several strategies and tools are emerging to facilitate PQC integration in AI environments: 

 TLS with PQC: Libraries such as OpenSSL and BoringSSL now support hybrid cryptographic 
modes combining classical and PQC algorithms in TLS handshakes. 

 Secure Enclaves + PQC: Using Trusted Execution Environments (e.g., Intel SGX) in combination 
with PQC to secure AI models from inside out. 

 Quantum-Safe Federated Learning Frameworks: Research prototypes are exploring PQC-based 
secure aggregation for privacy-preserving training. 

 Libraries and APIs: NIST finalists like CRYSTALS-Kyber and Dilithium are being wrapped into 
APIs for use in AI workflows, enabling secure model transmission and data sharing. 
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5.3 Practical Challenges 

While promising, integrating PQC into AI is not without challenges: 

 Performance Overheads: PQC algorithms typically involve larger keys and ciphertexts, which 
may introduce latency or memory issues—particularly critical in real-time AI applications. 

 Compatibility: Legacy systems and widely-used AI platforms are not yet fully compatible with 
post-quantum schemes, requiring transitional or hybrid strategies. 

 Hardware Constraints: Edge devices like smartphones, sensors, and embedded systems may 
struggle with the computational demands of some PQC schemes. 

 Lack of Standardized APIs: There is a need for more unified APIs and middleware that abstract 
PQC complexity while ensuring compatibility with AI frameworks (e.g., TensorFlow, PyTorch). 

 

5.4 Security Benefits for AI Systems 

Integrating PQC offers significant benefits for long-term security and trust in AI systems: 

 Resistance to Future Attacks: Protects against “harvest now, decrypt later” threats. 
 Model Integrity: Ensures authenticity and trustworthiness of models through quantum-resistant 

digital signatures. 
 Confidential AI: Enhances privacy of data and inference results in mission-critical applications 

like healthcare, defense, and finance. 
 Regulatory Compliance: Aligns with forthcoming standards and policies likely to mandate post-

quantum readiness for sensitive digital systems. 

 

6. Case Studies and Applications 

The growing intersection of AI and cybersecurity has led to an increasing awareness of the vulnerabilities 
introduced by quantum computing. Several organizations and research efforts have already begun piloting 
or conceptualizing Post-Quantum Cryptography (PQC) integration into AI workflows. This section 
provides concrete case studies and practical applications that highlight how PQC can secure AI systems 
in critical domains. 

 

6.1 Case Study 1: Federated Learning in Healthcare 

Scenario: A consortium of hospitals collaborates to train a predictive AI model for early disease detection 
using sensitive patient data. The system employs federated learning, allowing each hospital to train the 
model locally and share updates without exposing raw data. 

Challenge: Communication between hospitals is secured using public-key encryption. With quantum 
threats looming, there's concern about future decryption of sensitive model updates and training data. 



 Page | 11 
 

 

 
Author: Danny Smith, Brighton Aldridge Community Academy, United Kingdom. 
Email: info@virtualeap.com 

PQC Application: 

 Encryption: Replacing traditional TLS with a Kyber-based PQC TLS implementation ensures 
confidentiality during parameter exchange. 

 Authentication: Each update is signed with Dilithium digital signatures, protecting against 
tampering and model poisoning. 

 Outcome: The system becomes resilient to “harvest now, decrypt later” attacks while maintaining 
patient privacy and model trustworthiness. 

 

6.2 Case Study 2: AI Model Deployment in Edge IoT Devices 

Scenario: A smart agriculture company uses AI-powered IoT sensors in the field to monitor soil conditions 
and control irrigation. These edge devices frequently receive AI model updates from the cloud. 

Challenge: The low computational capacity of IoT devices limits the use of complex cryptographic 
schemes, and any compromise in model integrity could lead to environmental damage or operational failure. 

PQC Application: 

 Lightweight Signature Scheme: SPHINCS+, chosen for its statelessness and long-term security, 
is used to verify updates. 

 Key Exchange: NTRU-based key exchange is implemented to establish secure communication 
without relying on vulnerable ECC/RSA keys. 

 Outcome: Model updates are protected from tampering, even if intercepted by a quantum 
adversary. The lightweight nature of the chosen algorithms ensures smooth operation on 
constrained devices. 

 

6.3 Case Study 3: AI-as-a-Service (AIaaS) in Finance 

Scenario: A fintech company provides cloud-based AI models to analyze credit risk and detect fraud for 
multiple client banks. Clients send encrypted data to the AI service for real-time inference. 

Challenge: The company must guarantee that client data and model responses remain secure, even if 
intercepted now and decrypted in the quantum future. 

PQC Application: 

 Hybrid PQC-Classical TLS: A hybrid handshake protocol is implemented using CRYSTALS-
Kyber along with classical algorithms to ensure backward compatibility and forward secrecy. 

 Audit Logs: All communication is logged and signed using SPHINCS+, providing immutable 
proof of model usage and inference requests. 

 Outcome: The company demonstrates quantum readiness and enhances trust among high-stakes 
clients in a highly regulated environment. 
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6.4 Research Project: Google and Cloudflare’s PQC TLS Trials 

Context: In preparation for a post-quantum future, Google and Cloudflare conducted real-world 
experiments with post-quantum key exchange algorithms in TLS connections. 

Relevance to AI: 

 AI services that rely on web APIs for model access or data submission will benefit from these 
enhancements to secure inference and communication. 

 The success of these trials proves the viability of PQC deployment at scale, including in AI-heavy 
environments like cloud platforms, where APIs and model endpoints are exposed. 

 

6.5 National Security AI Systems 

Scenario: Defense departments are increasingly relying on AI for threat detection, autonomous navigation, 
and decision support. 

Quantum Risk: 

 Compromise of communication channels between AI components (e.g., drones, command centers) 
could have devastating consequences. 

PQC Application: 

 Lattice-based encryption ensures secure model updates to battlefield systems. 
 Digital signatures like Dilithium verify the authenticity of tactical AI algorithms. 

Outcome: Early integration of PQC into AI military infrastructure supports operational integrity and data 
sovereignty. 

 

7. Challenges and Open Issues 

Despite the promise of Post-Quantum Cryptography (PQC) in protecting AI systems against future quantum 
threats, several challenges and unresolved issues hinder its widespread adoption. These challenges span 
technical, operational, and policy dimensions, particularly when integrating PQC into dynamic and 
resource-constrained AI environments. 

 

7.1 Performance Overheads 

 Issue: PQC algorithms often require significantly larger key sizes, ciphertexts, and signatures 
than traditional cryptosystems (e.g., RSA, ECC). 
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 Impact on AI: Increased bandwidth and computational load may degrade AI system performance, 
especially in latency-sensitive applications like real-time decision-making, autonomous vehicles, 
or smart manufacturing. 

 Open Question: How can we optimize PQC schemes or adapt AI architectures to minimize 
performance trade-offs without compromising security? 

 

7.2 Resource Constraints on Edge Devices 

 Issue: Many AI systems are deployed on IoT and edge devices with limited memory, storage, and 
processing capabilities. 

 PQC Limitation: Not all post-quantum algorithms are lightweight enough to operate efficiently 
on such platforms. 

 Open Question: Can hybrid or tailored PQC schemes be developed for constrained environments 
while maintaining acceptable security levels? 

 

7.3 Integration Complexity 

 Issue: AI systems involve diverse software stacks (e.g., TensorFlow, PyTorch), communication 
protocols (e.g., REST, gRPC), and hardware ecosystems. 

 Integration Hurdle: Existing PQC libraries are still maturing, and standardized, easy-to-
integrate APIs for AI systems are lacking. 

 Open Question: How can we create seamless, modular PQC integration frameworks for AI 
developers and platforms? 

 

7.4 Incomplete Standardization and Maturity 

 Issue: While NIST has selected candidate algorithms for standardization, complete adoption and 
tooling support are still evolving. 

 Risks: 
o New vulnerabilities may be discovered in early PQC schemes (e.g., SIKE’s recent 

compromise). 
o Dependence on algorithms not yet widely vetted across diverse real-world AI scenarios. 

 Open Question: What level of trust and readiness is required before full-scale deployment of PQC 
in high-stakes AI systems? 

 

7.5 Backward Compatibility and Transition Strategies 

 Issue: AI systems built on existing public-key infrastructure (PKI) and TLS stacks may struggle 
to support PQC without breaking compatibility. 

 Hybrid Models: While transitional models combining classical and PQC algorithms are being 
proposed, their security assumptions are not fully validated. 

 Open Question: How can we ensure a smooth migration path for AI systems while balancing 
security, compatibility, and usability? 
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7.6 Regulatory and Compliance Uncertainty 

 Issue: Most current cybersecurity and AI regulations do not yet mandate or define standards for 
quantum-resistant cryptography. 

 Challenge: Organizations adopting PQC may lack clear legal or compliance frameworks to guide 
their implementation, especially across jurisdictions. 

 Open Question: How should policymakers and standard bodies shape future regulatory 
frameworks to accelerate quantum-safe AI development? 

 

7.7 Adversarial AI and New Attack Vectors 

 Issue: PQC focuses on cryptographic resilience, but does not directly address adversarial 
machine learning, poisoning attacks, or explainability issues in AI. 

 New Vectors: The interaction between PQC and AI could itself introduce novel vulnerabilities 
(e.g., side-channel attacks on post-quantum key exchanges in neural hardware). 

 Open Question: What new threat models emerge from the convergence of PQC and AI, and how 
should they be analyzed? 

 

8. Future Directions and Research Opportunities 

The intersection of Post-Quantum Cryptography (PQC) and Artificial Intelligence (AI) is a fertile ground 
for innovation, with many unanswered questions and emerging challenges. As quantum computing 
progresses and AI systems become increasingly pervasive, the urgency to develop robust, scalable, and 
efficient quantum-safe solutions grows. Below, we outline key future directions and research opportunities 
that can guide academia, industry, and policymakers in this critical area. 

 

8.1 Development of Lightweight PQC Algorithms for AI at the Edge 

 Research Need: Design and optimize lightweight post-quantum algorithms tailored for 
resource-constrained AI devices such as IoT sensors, mobile phones, and embedded systems. 

 Goal: Achieve a balance between security, computational efficiency, and low power consumption. 
 Opportunity: Explore hybrid cryptographic models combining classical and quantum-safe 

components that can be incrementally deployed. 

 

8.2 Seamless Integration Frameworks for AI Platforms 

 Research Need: Create modular, standardized APIs and middleware that abstract the 
complexities of PQC for AI practitioners. 

 Goal: Enable developers to easily integrate PQC into popular AI frameworks (TensorFlow, 
PyTorch) and communication protocols without deep cryptographic expertise. 
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 Opportunity: Collaborate with open-source communities to build PQC-enabled AI toolkits and 
plug-ins. 

 

8.3 Hybrid Cryptography and Transition Strategies 

 Research Need: Investigate secure and practical hybrid cryptographic protocols combining 
classical and post-quantum primitives for gradual migration. 

 Goal: Mitigate risks during transition periods and ensure backward compatibility with existing 
infrastructure. 

 Opportunity: Formal verification and security proofs of hybrid schemes in AI-specific scenarios 
(e.g., federated learning, model distribution). 

 

8.4 PQC-Aware AI Architectures 

 Research Need: Design AI architectures and communication protocols inherently aware of the 
constraints and capabilities of PQC. 

 Goal: Optimize data flow, encryption/decryption operations, and key management for quantum-
safe AI systems. 

 Opportunity: Co-design of cryptographic primitives and AI hardware accelerators to reduce 
latency and resource usage. 

8.5 Post-Quantum Privacy-Preserving AI 

 Research Need: Combine PQC with privacy-preserving techniques such as homomorphic 
encryption, secure multi-party computation, and differential privacy in AI. 

 Goal: Enable secure collaborative AI without exposing sensitive data, even under quantum attacks. 
 Opportunity: Develop efficient quantum-safe protocols that maintain privacy guarantees with 

acceptable overhead. 

8.6 Standardization and Policy Frameworks 

 Research Need: Engage with standard bodies (e.g., NIST, ISO) to develop guidelines and best 
practices for PQC adoption in AI systems. 

 Goal: Facilitate regulatory compliance, interoperability, and trust in quantum-resilient AI 
technologies. 

 Opportunity: Shape global policies that incentivize early PQC integration and quantum-safe AI 
development. 

8.7 Security Analysis and Threat Modeling for PQC-AI Systems 

 Research Need: Develop comprehensive threat models that consider the unique vulnerabilities 
introduced by the integration of PQC and AI. 

 Goal: Identify potential new attack surfaces including side-channels, adversarial inputs, and 
cryptographic failures specific to AI workflows. 
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 Opportunity: Advance formal verification techniques and continuous monitoring frameworks to 
ensure AI system robustness in the post-quantum era. 

8.8 Education and Awareness 

 Research Need: Promote education programs and training focused on quantum-safe 
cryptography tailored for AI developers, cybersecurity experts, and policymakers. 

 Goal: Build a skilled workforce capable of developing, deploying, and managing PQC-secured AI 
systems. 

 Opportunity: Develop interdisciplinary curricula and open educational resources bridging 
cryptography and AI. 

9. Conclusion 

As quantum computing advances toward practical realization, the security landscape for Artificial 
Intelligence (AI) systems faces unprecedented challenges. Traditional cryptographic schemes that 
underpin the confidentiality, integrity, and authenticity of AI workflows are increasingly 
vulnerable to quantum attacks. Post-Quantum Cryptography (PQC) emerges as an essential 
technology to safeguard AI systems from these emerging threats and ensure their reliability in the 
future. 

This paper has explored the critical need to integrate PQC into AI environments, identifying the 
key integration points, methodologies, and real-world applications. Through case studies across 
healthcare, edge computing, finance, and national security, we have demonstrated the practical 
viability and necessity of deploying quantum-resistant algorithms to protect sensitive data and AI 
models. 

However, this transition is not without challenges. Performance overheads, resource constraints, 
integration complexity, and evolving standards pose significant hurdles. Addressing these requires 
interdisciplinary research, collaborative efforts between cryptographers, AI engineers, and 
policymakers, and a forward-looking approach that balances security with operational feasibility. 

Looking ahead, the future of secure AI depends on continued innovation in lightweight algorithms, 
seamless integration frameworks, hybrid cryptographic protocols, and comprehensive threat 
modeling. Equally important are education, policy development, and global standardization efforts 
to facilitate a smooth transition to quantum-safe AI. 

In conclusion, the convergence of PQC and AI offers a promising pathway to resilient, trustworthy, 
and privacy-preserving intelligent systems in the quantum era. Proactive adoption and research 
today will be pivotal in securing the AI-driven technologies that increasingly shape our world. 
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